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Twists of GL2-type abelian varieties and Galois images for genus 2

WARNING: works in progess

Two topics

Central values of L-functions of twists of GL2-type abelian varieties:
joint work with Soma Purkait (Tokyo University of Science).

Residual Galois images for genus 2 and 3
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Proposition (Purkait, 2013)

Let E be the elliptic curve 50.b3 (Cremona label 50b1). Let Q1, Q2, Q3,
Q4 be the following positive-definite ternary quadratic forms,

Q1 = 25x2 + 25y2 + z2, Q2 = 14x2 + 9y2 + 6z2 + 4yz + 6xz + 2xy ,

Q3 = 25x2 + 13y2 + 2z2 + 2yz, Q4 = 17x2 + 17y2 + 3z2 − 2yz − 2xz + 16xy .

Let n be a positive square-free number such that 5 - n. Then,

L(E−n, 1) =
L(E−1, 1)√

n
· c2

n

where E−n is the −n-th quadratic twist of E and

cn =
4∑

i=1

(−1)i−1

2
·#{(x , y , z) : Qi (x , y , z) = n}.
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How do you prove the proposition?

Use modularity and apply Waldspurger’s Theorem.

Let fE be the newform associated to E , Waldspurger’s Theorem relates
the critical value of the L-function of the n-th quadratic twist of fE to
the n-th coefficient of a certain modular form of half-integral weight.

Problem: Waldspurger’s recipes for these modular forms of half-integral
weight are far from being explicit. In particular, they are expressed in the
language of automorphic representations and Hecke characters.
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Let k be positive integers with k ≥ 3 odd. Let χ be an even Dirichlet
character with modulus divisible by 4. Let χ0 be the Dirichlet character

χ0(n) := χ(n)

(
−1

n

)(k−1)/2

.

Fix a newform f of level N in Snew
k−1(N, χ2), let ρ be the automorphic

representation associated to f and ρp be the local component of ρ at p.
Let S be the (finite) set of primes p such that ρp is not irreducible
principal series.

If p /∈ S , ρp is equivalent to π(µ1,p, µ2,p) where µ1,p and µ2,p are two
continuous characters on Q p such that µ1,pµ2,p 6= |·|±1.

Let (H1) be the following hypothesis:

(H1) For all p /∈ S , µ1,p(−1) = µ2,p(−1) = 1.
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Corollary (Waldspurger)

Let f ∈ Snew
k−1(N, χ2) be a newform such that f satisfies (H1). Suppose

h(z) =
∑∞

n=1 anqn ∈ Sk/2(M, χ, f ) for some M ≥ 1 such that N | (M/2).
Suppose that n1, n2 be positive square-free integers such that
n1/n2 ∈ Q p

2 for all p | N. Then we have the following relation:

a2n1L(f χ−10 χn2 , 1)χ(n2/n1)n
k/2−1
2 = a2n2L(f χ−10 χn1 , 1)n

k/2−1
1 .

Sk/2(M, χ, f ) = {h ∈ S ′k/2(M, χ) : Tp2(h) = λp(f )h for almost all p - M},

where Tp(f ) = λp(f )f ,

Theorem (Shimura)

S ′k/2(M, χ) =
⊕

f Sk/2(M, χ, f ) where f runs through all newforms

f ∈ Snew
k−1(N, χ2) with N | (M/2) and cond(χ2) | N.
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Using results similar in nature to the one in the previous slide (jointly
with works of Mao, Baruch-Mao), we are able to compute central values
of L-functions of twists of GL2-type abelian varieties.

We do have exaples in dimensions 2, 3 and 5. The central difficulty is the
computation of the relevant space of half integral weight modular forms
and in particular the image of the Shimura map and its decomposition.
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Example 1

Let f ∈ Snew
2 (65, χtriv)

f = q+aq2+(−a+1)q3+q4−q5+(a−3)q6+2q7−aq8+(−2a+1)q9+O(q10),

a =
√

3 (LMFDB label 65.2.1.b).
The space S3/2(260, χtriv, f ) is 2-dimensional and we compute the basis:

g1 := q5 − q6 + (a + 1)q15 − q20 + (a + 1)q21 + q24 − aq26 + O(q30)

g2 := q11 + (−a− 2)q15 + (−a− 2)q19 + (a + 1)q20 + (−a− 1)q24 + O(q30)



Twists of GL2-type abelian varieties and Galois images for genus 2

Central values

For each subset Si of the set of prime divisors of 65, let

Di := {D fund. disc. :
(
D
l

)
= −wl ⇔ l ∈ Si}

where wl denotes Atkin-Lehner eigenvalue (w5 = 1 and w13 = −1).

The space of fundamental disc. is union of such Di .

In particular for S1 = φ, we have
D1 = {D fund. disc. :

(
D
5

)
6= −1,

(
D
13

)
6= 1}.
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For each Di it is possible to give a concrete formula for L(f ,D, 1) for
D ∈ Di .
For D1 the associated form is g2 =

∑∞
n=0 cnqn and we have: for D ∈ D1

if D > 0, L(f ,D, 1) = 0 and

if D < 0,

L(f ,D, 1) =
(c|D|)

2

|D|1/2 · 21−tD
· L(f ,−11, 1)(11)1/2

=
(c|D|)

2

|D|1/2
· π

22−tD
· < f , f >

< g2, g2 >
.

where tD is the number of primes dividing both 65 and D.



Twists of GL2-type abelian varieties and Galois images for genus 2

Central values

Example 2

Let f be the newform with LMFDB label 63.2.1.b

f = q + aq2 + q4 − 2aq5 + q7 − aq8 − 6q10 + 2aq11 + O(q12),

a =
√

3.
In this case the space S3/2(252, χtriv, f ) is 4-dimensional and we compute
the basis:

g1 := q + 1/2(a + 1)q7 − 2q16 + (a + 1)q22 + (−2a − 1)q25 + (a + 1)q28 + O(q30)

g2 := q2 + (a − 2)q11 + (−a + 2)q14 + aq23 + (a − 3)q29 + O(q30)

g3 := q4 + 1/2(−a − 1)q7 + aq16 − q28 + (−a − 1)q43 + q64 + 2q67 + O(q70)

g4 := q8 + (a − 2)q11 − aq23 + aq32 + (−a + 1)q35 + (−a + 1)q44 + (−a + 2)q56 + O(q70)
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For D fundamental disc. such that D = −D ′ < 0 and
(

D′

3

)
= −1,

L(f ,−D ′, 1) = κ · (cD′)2

D ′1/2
· π < f , f >

< g4, g4 >
,

and for D fundamental disc. such that D = −D ′ < 0 and
(

D′

3

)
= 1,

L(f ,−D ′, 1) = κ · (cD′)2

D ′1/2
· π < f , f >

< g3, g3 >
,

where κ = 1/4 if (7,D) = 1, else κ = 1/2.
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Let Q be an algebraic closure of Q and let GQ = Gal(Q /Q ).
Let A be a principally polarized abelian variety over Q of dimension g .

Let ` be a prime and A[`] the `-torsion subgroup:

A[`] := {P ∈ A(Q ) | [`]P = 0} ∼= (Z /`Z )2g .

A[`] is a 2g -dimensional F`-vector space, as well as a GQ -module.
The polarization induces a symplectic pairing, the mod ` Weil pairing on
A[`], that is Galois invariant. This gives a representation

ρA,` : GQ → GSp(A[`], 〈 , 〉) ∼= GSp2g (F`).
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Theorem (Serre)

Let A/Q be a principally polarized abelian variety of dimension g.
Assume that g = 2, 6 or g is odd and, furthermore, assume that
EndQ (A) = Z . Then there exists a bound BA such that for all primes
` > BA the representation ρA,` is surjective.

The conclusion of the theorem is known to be false for general g
(counterexample by Mumford for g = 4).

Open question

Is it possble to have a uniform bound Bg depending only on g?
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Genus 2 & 3

Goal

Write an algorithm to determine the image of a mod ` Galois
representation associated to the Jacobian of a curve of genus 2 or 3 over
Q and collect data for B2 and B3.

Status:

Genus 2: there is a method presented by Dieulefait but it is not
effective: bounds for certifying the image are needed;

Genus 3: algorithm from Anni-Lemos-Siksek for the semistable case.
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Genus 2

Mitchell 1914: Classification of maximal proper subgroups
G of PSp(4,F`) (` odd)

Classification as groups of transformations of the projective space:

a group having an invariant point and plane

a group having an invariant parabolic congruence

a group having an invariant hyperbolic congruence

a group having an invariant elliptic congruence

a group having an invariant quadric

a group having an invariant twisted cubic

a group G containing a normal elementary abelian subgroup E of
order 16, with: G/E ∼= A5 or S5

a group G isomorphic to A6,S6 or A7.
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In each case it is possible to give criteria for the characteristic
polynomials of images of Frobenius at unramified primes.

The algorithm uses modularity for two dimensional Jordan–Hölder factors.
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Genus 3

Theorem (A., Lemos and Siksek)

Let A be a semistable principally polarized abelian variety of dimension
d ≥ 1 over Q and let ` ≥ max(5, d + 2) be prime.

Suppose the image of ρA,` : GQ → GSp2d(F`) contains a transvection.

Then ρA,` is either reducible or surjective.
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An “algorithm” for the genus 3 case

We now let A/Q be a principally polarized abelian threefold.

Assumptions

(a) A is semistable;

(b) ` ≥ 5;

(c) there is a prime q such that the special fibre of the Néron model for
A at q has toric dimension 1.

(d) ` does not divide gcd({q ·#Φq : q ∈ S}), where S is the set of
primes q satisfying (C) and Φq is the group of connected
components of the special fibre of the Néron model of A at q.

Under these assumptions the image of ρA,` contains a transvection.
Then ρA,` is either reducible or surjective.
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“Algorithm”

Practical method which should, in most cases, produce a small integer B
(depending on A) such that for ` - B, the representation ρA,` is
irreducible and, hence, surjective.
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2-dimensional Jordan–Hölder factors

Lemma

Suppose the GQ -module A[`] does not have any 1-dimensional
Jordan–Hölder factors, but has either a 2-dimensional or 4-dimensional
irreducible subspace U. Then A[`] has a 2-dimensional Jordan–Hölder
factor W with determinant χ.
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Let N be the conductor of A. Let W be a 2-dimensional Jordan–Hölder
factor of A[`] with determinant χ.
The representation

τ : GQ → GL(W ) ∼= GL2(F`)

is odd (as the determinant is χ), irreducible (as W is a Jordan–Hölder
factor) and 2-dimensional.
By Serre’s modularity conjecture (Khare, Wintenberger, Dieulefait, Kisin
Theorem), this representation is modular:

τ ∼= ρf ,`

it is equivalent to the mod ` representation attached to a newform f of
level M | N and weight 2.
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Let HM,p be the p-th Hecke polynomial for the new subspace Snew
2 (M) of

cusp forms of weight 2 and level M:

HM,p =
∏

(x − cp(g)),

where g runs through the newforms of weight 2 and level M. Write

H ′M,p(x) = xdHM,p(x + p/x) ∈ Z [x ],

where d = deg(HM,p) = dim(Snew
2 (M)).
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Let
R(M, p) = Res(Pp,H

′
M,p) ∈ Z ,

where Res denotes resultant an Pp is the local Weil polynomial. If
R(M, p) 6= 0 then we have a bound on `.

The integers R(M, p) can be very large. Given a non-empty set T of
rational primes p of good reduction for A, let

R(M,T ) = gcd({p · R(M, p) : p ∈ T}).

In practice, we have found that for a suitable choice of T , the value
R(M,T ) is fairly small.
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Let
B ′2(T ) = lcm(R(M,T ))

where M runs through the divisors of N such that dim(Snew
2 (M)) 6= 0,

and let
B2(T ) = lcm(B1(T ),B ′2(T ))

where B1(T ) is given as before.

Lemma

Let T be a non-empty set of rational primes of good reduction for A, and
suppose ` - B2(T ). Then A[`] does not have 1-dimensional Jordan–Hölder
factors, and does not have irreducible 2- or 4-dimensional subspaces.
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We fail to bound ` in the above lemma if R(M, p) = 0 for all primes p of
good reduction.

Here are two situations where this can happen:

A ∼=Q E × A′ where E is an elliptic curve and A′ an abelian surface.

A is of GL2-type.

Note that in both these situations EndQ (A) 6= Z .

We expect, but are unable to prove, that if EndQ (A) = Z then there will
be primes p such that R(M, p) 6= 0.
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