Twists of $G L_{2}$-TYPE ABELIAN VARIETIES AND
 GALOIS IMAGES FOR GENUS 2

Samuele Anni

BSD Data @ Bristol, University of Bristol, 28th March 2017

WARNING: works in progess

Two topics

- Central values of L-functions of twists of $G L_{2}$-type abelian varieties: joint work with Soma Purkait (Tokyo University of Science).
- Residual Galois images for genus 2 and 3

(1) Central values

(2) Galois Representations

Proposition (Purkait, 2013)

Let E be the elliptic curve 50.b3 (Cremona label 50b1). Let Q_{1}, Q_{2}, Q_{3}, Q_{4} be the following positive-definite ternary quadratic forms,

$$
\begin{array}{lr}
Q_{1}=25 x^{2}+25 y^{2}+z^{2}, & Q_{2}=14 x^{2}+9 y^{2}+6 z^{2}+4 y z+6 x z+2 x y, \\
Q_{3}=25 x^{2}+13 y^{2}+2 z^{2}+2 y z, & Q_{4}=17 x^{2}+17 y^{2}+3 z^{2}-2 y z-2 x z+16 x y .
\end{array}
$$

Let n be a positive square-free number such that $5 \nmid n$. Then,

$$
\mathrm{L}\left(E_{-n}, 1\right)=\frac{\mathrm{L}\left(E_{-1}, 1\right)}{\sqrt{n}} \cdot c_{n}^{2}
$$

where E_{-n} is the $-n$-th quadratic twist of E and

$$
c_{n}=\sum_{i=1}^{4} \frac{(-1)^{i-1}}{2} \cdot \#\left\{(x, y, z): Q_{i}(x, y, z)=n\right\}
$$

How do you prove the proposition?
Use modularity and apply Waldspurger's Theorem.
Let f_{E} be the newform associated to E, Waldspurger's Theorem relates the critical value of the L-function of the n-th quadratic twist of f_{E} to the n-th coefficient of a certain modular form of half-integral weight.

Problem: Waldspurger's recipes for these modular forms of half-integral weight are far from being explicit. In particular, they are expressed in the language of automorphic representations and Hecke characters.

Let k be positive integers with $k \geq 3$ odd. Let χ be an even Dirichlet character with modulus divisible by 4 . Let χ_{0} be the Dirichlet character

$$
\chi_{0}(n):=\chi(n)\left(\frac{-1}{n}\right)^{(k-1) / 2}
$$

Fix a newform f of level N in $S_{k-1}^{\text {new }}\left(N, \chi^{2}\right)$, let ρ be the automorphic representation associated to f and ρ_{p} be the local component of ρ at p. Let S be the (finite) set of primes p such that ρ_{p} is not irreducible principal series.

If $p \notin S, \rho_{p}$ is equivalent to $\pi\left(\mu_{1, p}, \mu_{2, p}\right)$ where $\mu_{1, p}$ and $\mu_{2, p}$ are two continuous characters on \mathbb{Q}_{p} such that $\mu_{1, p} \mu_{2, p} \neq|\cdot|^{ \pm 1}$.

Let (H1) be the following hypothesis:
(H1) For all $p \notin S, \mu_{1, p}(-1)=\mu_{2, p}(-1)=1$.

Corollary (Waldspurger)

Let $f \in S_{k-1}^{\text {new }}\left(N, \chi^{2}\right)$ be a newform such that f satisfies (H1). Suppose $h(z)=\sum_{n=1}^{\infty} a_{n} q^{n} \in S_{k / 2}(M, \chi, f)$ for some $M \geq 1$ such that $N \mid(M / 2)$. Suppose that n_{1}, n_{2} be positive square-free integers such that $n_{1} / n_{2} \in \mathbb{Q}_{p}{ }^{2}$ for all $p \mid N$. Then we have the following relation:

$$
a_{n_{1}}^{2} \mathrm{~L}\left(f \chi_{0}^{-1} \chi_{n_{2}}, 1\right) \chi\left(n_{2} / n_{1}\right) n_{2}^{k / 2-1}=a_{n_{2}}^{2} \mathrm{~L}\left(f \chi_{0}^{-1} \chi_{n_{1}}, 1\right) n_{1}^{k / 2-1} .
$$

$S_{k / 2}(M, \chi, f)=\left\{h \in S_{k / 2}^{\prime}(M, \chi): T_{p^{2}}(h)=\lambda_{p}(f) h\right.$ for almost all $\left.p \nmid M\right\}$, where $T_{p}(f)=\lambda_{p}(f) f$,

Theorem (Shimura)

$S_{k / 2}^{\prime}(M, \chi)=\bigoplus_{f} S_{k / 2}(M, \chi, f)$ where f runs through all newforms $f \in S_{k-1}^{\text {new }}\left(N, \chi^{2}\right)$ with $N \mid(M / 2)$ and cond $\left(\chi^{2}\right) \mid N$.

Using results similar in nature to the one in the previous slide (jointly with works of Mao, Baruch-Mao), we are able to compute central values of L-functions of twists of $G L_{2}$-type abelian varieties.

We do have exaples in dimensions 2,3 and 5 . The central difficulty is the computation of the relevant space of half integral weight modular forms and in particular the image of the Shimura map and its decomposition.

Example 1

Let $f \in S_{2}^{\text {new }}\left(65, \chi_{\text {triv }}\right)$
$f=q+a q^{2}+(-a+1) q^{3}+q^{4}-q^{5}+(a-3) q^{6}+2 q^{7}-a q^{8}+(-2 a+1) q^{9}+O\left(q^{10}\right)$,
$a=\sqrt{3}$ (LMFDB label 65.2.1.b).
The space $S_{3 / 2}\left(260, \chi_{\text {triv }}, f\right)$ is 2 -dimensional and we compute the basis:
$g_{1}:=q^{5}-q^{6}+(a+1) q^{15}-q^{20}+(a+1) q^{21}+q^{24}-a q^{26}+O\left(q^{30}\right)$
$g_{2}:=q^{11}+(-a-2) q^{15}+(-a-2) q^{19}+(a+1) q^{20}+(-a-1) q^{24}+O\left(q^{30}\right)$

For each subset S_{i} of the set of prime divisors of 65 , let
$D_{i}:=\left\{D\right.$ fund. disc. : $\left.\left(\frac{D}{I}\right)=-w_{l} \Leftrightarrow I \in S_{i}\right\}$
where w_{l} denotes Atkin-Lehner eigenvalue ($w_{5}=1$ and $w_{13}=-1$).
The space of fundamental disc. is union of such D_{i}.
In particular for $S_{1}=\phi$, we have
$D_{1}=\left\{D\right.$ fund. disc. : $\left.\left(\frac{D}{5}\right) \neq-1,\left(\frac{D}{13}\right) \neq 1\right\}$.

For each D_{i} it is possible to give a concrete formula for $L(f, D, 1)$ for $D \in D_{i}$.
For D_{1} the associated form is $g_{2}=\sum_{n=0}^{\infty} c_{n} q^{n}$ and we have: for $D \in D_{1}$

- if $D>0, L(f, D, 1)=0$ and
- if $D<0$,

$$
\begin{aligned}
L(f, D, 1) & =\frac{\left(c_{|D|}\right)^{2}}{|D|^{1 / 2} \cdot 2^{1-t_{D}}} \cdot L(f,-11,1)(11)^{1 / 2} \\
& =\frac{\left(c_{|D|}\right)^{2}}{|D|^{1 / 2}} \cdot \frac{\pi}{2^{2-t_{D}}} \cdot \frac{<f, f\rangle}{\left\langle g_{2}, g_{2}\right\rangle} .
\end{aligned}
$$

where t_{D} is the number of primes dividing both 65 and D.

EXAMPLE 2

Let f be the newform with LMFDB label 63.2.1.b

$$
f=q+a q^{2}+q^{4}-2 a q^{5}+q^{7}-a q^{8}-6 q^{10}+2 a q^{11}+O\left(q^{12}\right)
$$

$a=\sqrt{3}$.
In this case the space $S_{3 / 2}\left(252, \chi_{\text {triv }}, f\right)$ is 4-dimensional and we compute the basis:

$$
\begin{aligned}
& g_{1}:=q+1 / 2(a+1) q^{7}-2 q^{16}+(a+1) q^{22}+(-2 a-1) q^{25}+(a+1) q^{28}+O\left(q^{30}\right) \\
& g_{2}:=q^{2}+(a-2) q^{11}+(-a+2) q^{14}+a q^{23}+(a-3) q^{29}+O\left(q^{30}\right) \\
& g_{3}:=q^{4}+1 / 2(-a-1) q^{7}+a q^{16}-q^{28}+(-a-1) q^{43}+q^{64}+2 q^{67}+O\left(q^{70}\right) \\
& g_{4}:=q^{8}+(a-2) q^{11}-a q^{23}+a q^{32}+(-a+1) q^{35}+(-a+1) q^{44}+(-a+2) q^{56}+O\left(q^{70}\right)
\end{aligned}
$$

For D fundamental disc. such that $D=-D^{\prime}<0$ and $\left(\frac{D^{\prime}}{3}\right)=-1$,

$$
L\left(f,-D^{\prime}, 1\right)=\kappa \cdot \frac{\left(c_{D^{\prime}}\right)^{2}}{D^{\prime 1 / 2}} \cdot \pi \frac{\langle f, f\rangle}{\left\langle g_{4}, g_{4}\right\rangle}
$$

and for D fundamental disc. such that $D=-D^{\prime}<0$ and $\left(\frac{D^{\prime}}{3}\right)=1$,

$$
L\left(f,-D^{\prime}, 1\right)=\kappa \cdot \frac{\left(c_{D^{\prime}}\right)^{2}}{D^{\prime 1 / 2}} \cdot \pi \frac{<f, f>}{\left\langle g_{3}, g_{3}\right\rangle}
$$

where $\kappa=1 / 4$ if $(7, D)=1$, else $\kappa=1 / 2$.

(1) Central values

(2) Galois representations

Let $\overline{\mathbb{Q}}$ be an algebraic closure of \mathbb{Q} and let $G_{\mathbb{Q}}=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$.
Let A be a principally polarized abelian variety over \mathbb{Q} of dimension g.
Let ℓ be a prime and $A[\ell]$ the ℓ-torsion subgroup:

$$
A[\ell]:=\{P \in A(\overline{\mathbb{Q}}) \mid[\ell] P=0\} \cong(\mathbb{Z} / \ell \mathbb{Z})^{2 g} .
$$

$A[\ell]$ is a $2 g$-dimensional \mathbb{F}_{ℓ}-vector space, as well as a $G_{\mathbb{Q}}$-module.
The polarization induces a symplectic pairing, the $\bmod \ell$ Weil pairing on $A[\ell]$, that is Galois invariant. This gives a representation

$$
\bar{\rho}_{A, \ell}: G_{\mathbb{Q}} \rightarrow \operatorname{GSp}(A[\ell],\langle,\rangle) \cong \operatorname{GSp}_{2 g}\left(\mathbb{F}_{\ell}\right) .
$$

Theorem (SERRE)

Let A / \mathbb{Q} be a principally polarized abelian variety of dimension g. Assume that $g=2,6$ or g is odd and, furthermore, assume that $\operatorname{End}_{\overline{\mathbb{Q}}}(A)=\mathbb{Z}$. Then there exists a bound B_{A} such that for all primes $\ell>B_{A}$ the representation $\bar{\rho}_{A, \ell}$ is surjective.

The conclusion of the theorem is known to be false for general g (counterexample by Mumford for $g=4$).

Open question

Is it possble to have a uniform bound B_{g} depending only on g ?

Genus 2 \& 3

GOAL

Write an algorithm to determine the image of a mod ℓ Galois representation associated to the Jacobian of a curve of genus 2 or 3 over \mathbb{Q} and collect data for B_{2} and B_{3}.

Status:

- Genus 2: there is a method presented by Dieulefait but it is not effective: bounds for certifying the image are needed;
- Genus 3: algorithm from Anni-Lemos-Siksek for the semistable case.

GEnus 2

Mitchell 1914: Classification of maximal proper subgroups G OF $\operatorname{PSp}\left(4, \mathbb{F}_{\ell}\right)(\ell$ ODD $)$

Classification as groups of transformations of the projective space:

- a group having an invariant point and plane
- a group having an invariant parabolic congruence
- a group having an invariant hyperbolic congruence
- a group having an invariant elliptic congruence
- a group having an invariant quadric
- a group having an invariant twisted cubic
- a group G containing a normal elementary abelian subgroup E of order 16 , with: $G / E \cong A_{5}$ or S_{5}
- a group G isomorphic to A_{6}, S_{6} or A_{7}.

In each case it is possible to give criteria for the characteristic polynomials of images of Frobenius at unramified primes.

The algorithm uses modularity for two dimensional Jordan-Hölder factors.

GEnUs 3

Theorem (A., Lemos And Siksek)

Let A be a semistable principally polarized abelian variety of dimension $d \geq 1$ over \mathbb{Q} and let $\ell \geq \max (5, d+2)$ be prime.

Suppose the image of $\bar{\rho}_{A, \ell}: G_{\mathbb{Q}} \rightarrow \mathrm{GSp}_{2 d}\left(\mathbb{F}_{\ell}\right)$ contains a transvection.
Then $\bar{\rho}_{A, \ell}$ is either reducible or surjective.

AN "ALGORITHM" FOR THE GENUS 3 CASE

We now let A / \mathbb{Q} be a principally polarized abelian threefold.

Assumptions

(A) A is semistable;
(B) $\ell \geq 5$;
(C) there is a prime q such that the special fibre of the Néron model for A at q has toric dimension 1.
(D) ℓ does not divide $\operatorname{gcd}\left(\left\{q \cdot \# \Phi_{q}: q \in S\right\}\right)$, where S is the set of primes q satisfying (C) and Φ_{q} is the group of connected components of the special fibre of the Néron model of A at q.

Under these assumptions the image of $\bar{\rho}_{A, \ell}$ contains a transvection. Then $\bar{\rho}_{A, \ell}$ is either reducible or surjective.

"Algorithm"

Practical method which should, in most cases, produce a small integer B (depending on A) such that for $\ell \nmid B$, the representation $\bar{\rho}_{A, \ell}$ is irreducible and, hence, surjective.

2-DIMENSIONAL Jordan-HÖLDER FACTORS

LEMMA

Suppose the $G_{\mathbb{Q}}$-module $A[\ell]$ does not have any 1-dimensional Jordan-Hölder factors, but has either a 2-dimensional or 4-dimensional irreducible subspace U. Then $A[\ell]$ has a 2-dimensional Jordan-Hölder factor W with determinant χ.

Let N be the conductor of A. Let W be a 2-dimensional Jordan-Hölder factor of $A[\ell]$ with determinant χ.
The representation

$$
\tau: G_{\mathbb{Q}} \rightarrow \mathrm{GL}(W) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)
$$

is odd (as the determinant is χ), irreducible (as W is a Jordan-Hölder factor) and 2-dimensional.
By Serre's modularity conjecture (Khare, Wintenberger, Dieulefait, Kisin Theorem), this representation is modular:

$$
\tau \cong \bar{\rho}_{f, \ell}
$$

it is equivalent to the $\bmod \ell$ representation attached to a newform f of level $M \mid N$ and weight 2.

Let $H_{M, p}$ be the p-th Hecke polynomial for the new subspace $S_{2}^{\text {new }}(M)$ of cusp forms of weight 2 and level M :

$$
H_{M, p}=\prod\left(x-c_{p}(g)\right)
$$

where g runs through the newforms of weight 2 and level M. Write

$$
H_{M, p}^{\prime}(x)=x^{d} H_{M, p}(x+p / x) \in \mathbb{Z}[x],
$$

where $d=\operatorname{deg}\left(H_{M, p}\right)=\operatorname{dim}\left(S_{2}^{\text {new }}(M)\right)$.

Let

$$
R(M, p)=\operatorname{Res}\left(P_{p}, H_{M, p}^{\prime}\right) \in \mathbb{Z}
$$

where Res denotes resultant an P_{p} is the local Weil polynomial. If $R(M, p) \neq 0$ then we have a bound on ℓ.

The integers $R(M, p)$ can be very large. Given a non-empty set T of rational primes p of good reduction for A, let

$$
R(M, T)=\operatorname{gcd}(\{p \cdot R(M, p): p \in T\})
$$

In practice, we have found that for a suitable choice of T, the value $R(M, T)$ is fairly small.

Let

$$
B_{2}^{\prime}(T)=\operatorname{Icm}(R(M, T))
$$

where M runs through the divisors of N such that $\operatorname{dim}\left(S_{2}^{\text {new }}(M)\right) \neq 0$, and let

$$
B_{2}(T)=\operatorname{lcm}\left(B_{1}(T), B_{2}^{\prime}(T)\right)
$$

where $B_{1}(T)$ is given as before.

LEMMA

Let T be a non-empty set of rational primes of good reduction for A, and suppose $\ell \nmid B_{2}(T)$. Then $A[\ell]$ does not have 1-dimensional Jordan-Hölder factors, and does not have irreducible 2- or 4-dimensional subspaces.

We fail to bound ℓ in the above lemma if $R(M, p)=0$ for all primes p of good reduction.

Here are two situations where this can happen:

- $A \cong_{\mathbb{Q}} E \times A^{\prime}$ where E is an elliptic curve and A^{\prime} an abelian surface.
- A is of GL_{2}-type.

Note that in both these situations $\operatorname{End}_{\overline{\mathbb{Q}}}(A) \neq \mathbb{Z}$.
We expect, but are unable to prove, that if $\operatorname{End}_{\overline{\mathbb{Q}}}(A)=\mathbb{Z}$ then there will be primes p such that $R(M, p) \neq 0$.

Twists of $G L_{2}$-TYPE ABELIAN VARIETIES AND
 GAlois images for genus 2

Samuele Anni

BSD Data @ Bristol,

 University of Bristol, 28th March 2017
Thanks!

